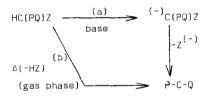
### ERRATUM

# Tetrahedron Letters No. 35, pp. 3623-3624 should have appeared as follows:


### THERMOLYTIC @~ELIMINATION OF ACETIC ACID FROM METHYLACETATE DERIVATIVES

## P.C. Oele and R.Louw

Gorlaeus Laboratories, University of Leiden, P.O.Box 75, Leiden, The Netherlands

#### (Received in UK 21 June 1972; accepted for publication 27 July 1972)

Thermolytic  $\beta$ -elimination - a counterpart of the solvolytic E2-type reaction ~ has been widely investigated <sup>1</sup>. Fonic  $\alpha$ -elimination (a), a carbene forming reaction, is also well Known.<sup>2</sup> Its thermolytic analogue (b), however, has only been proposed to occur with some chloromethane derivatives (e.g., CHCl<sub>2</sub> <sup>3a</sup> or C1CH<sub>2</sub>CN <sup>3b</sup>).



We wish to present our first results on the vapour phase thermolysis  $^4$  of some derivatives of methylacetate (Ia-e). In all cases <u>acetic acid</u> was formed (50 - 80%). The reactions were homogeneous <sup>x</sup> and approximately first order in (I), dilution with benzene or toluene having little or no effect on the rates of decomposition.

These observations leave little doubt that  $\alpha$ -elimination has taken place. In contrast with HCl elimination from halomethanes, the formation of acetic acid rules out a radical mechanism CH<sub>2</sub>COO, radicals would instantaneously have given CO<sub>2</sub> <sup>5</sup>. We suggest that a cyclic five-membered

Thermolytic Reactions of Esters. IX; Part VIII:P.C.Oele and R.Louw,Chem.Comm., 1972,in press x An increase of the surface-to-volume ratio (20x) of the reactor affected neither rate nor

product composition.

transition state is involved (eq. 1), leaving a carbene (II) which, of course, will undergo further reactions ; under the present conditions these are expected to involve only unimolecular fragmentations and/or isomerizations.

$$(I) \longrightarrow \begin{bmatrix} P \\ H \cdots C - Q \\ 0 \\ C - Q \\ C H_3 \end{bmatrix} \longrightarrow CH_3 COOH + P - C - Q (1)$$

$$(II)$$

$$(Ia-c) : 450 - 525^{\circ} C$$

$$(Id-e) : 325 - 400^{\circ} C$$

Indeed, together with acetic acid, large amounts of gaseous products are formed. Thus, neat (Ia) gives CD,  $CH_4$  and  $C_2H_6$  ( 1 : 0.5 : 0.15), thermolysis in excess of toluene leading to a ratio 1 : 0.8 : 0.1 . In the latter case bibenzyl, benzene and ethylbenzene are also produced.

Apparently, (IIa) reacts according to (2a) and/or (2b), the formation of trace amounts of acetaldehyde indicating that (2c) occurs at best only to a minor degree  $\times$ . The H. atoms will react with added toluens via addition - elimination to give benzene  $^{6}$ , or via hydrogen abstraction to give benzyl radicals and hence bibenzyl and ethylbenzene.

$$(IIa) \xrightarrow{(a)} co + cH_4$$

$$(b) \rightarrow cH_3 + (u=CH_3) \rightarrow H. + co \qquad (2)$$

$$(IIa) \xrightarrow{(c)} cH_3 - c \overset{0}{H}$$

From (Ib) large amounts of CO and benzene (imple/mole of acetic acid) are formed; the latter compound is free from deuterium when (Ib) is thermolyzed in an excess of  $C_6H_5 - CD_3$ . Apparently, phenoxycarbene (IIb) decomposes molecularly (cf. 2a) rather than via radicals.

(Ic) leads to  $CH_4$  - and presumably, CS - together with <u>ethene</u> (and a small amount of ethane). We suggest that (IIc) ~ apart from decomposing analogous to (2a,b) - inserts (3) and subsequently decomposes :

x Control experiments show that <u>added</u> acetaldehyde survives for at least 20% even at 525<sup>o</sup>.

Indeed, we have observed that the product pattern is comparable with that of <u>authentic</u> ethylene episulfide (III), thermolyzed under analogous conditions.

From the dialkoxy derivatives (Id, Ie)  $CO_2$  instead of CO is formed. Further products — e.g.  $C_2H_4$ ,  $C_2H_6$  and butane from Ie; the additional production of propane from (Id)-(Ie)mixtures — point to (4a). The formation of methylasetate from (Id) and of <u>ethyl propionate</u> from (Ie) is interpreted via rearrangement (4b) <sup>7</sup>:

$$\begin{array}{c} \text{OR} & (a) \\ \text{I} \\ \text{:C} \\ \text{OR} & (b) \\ \end{array} \begin{array}{c} \text{R} + \text{CO}_2 + \text{R}. \\ \text{I} \\ \text{R} - \text{C} - \text{OR} \end{array}$$
(4)

It appears that (resonance) stabilization of the carbone rather than the acidity of the  $\alpha$  - proton is the determining factor <sup>8</sup>. For (Ia) we have obtained log k = 13.4 - 50.5/0. From thermochemical kinetics <sup>×</sup> it is derived that CH<sub>3</sub>OCH must have a stabilization energy of roughly 40 kcal - a value close to that for :CF<sub>2</sub>.

Thermolytic  $\alpha$ -elimination of HZ is probably not restricted to Z = halogen or RCOO. We have evidence for 1,1-elimination of <u>alcohol</u> from HC(OCH<sub>3</sub>)<sub>3</sub>. Moreover, I(b) leads to <u>phenol</u> (~50%) in addition to acetic acid (~50%) already mentioned.

× From current data<sup>9</sup> one obtains  $\Delta H \ \% \ 83$  for  $CH_3COOCH_3 \rightarrow CH_3COOH + :CH_2$ . By group additivity,  $\Delta H_f^0(Ia)_g = -137$ ; with  $\Delta H_f^0(CH_3COOH)_g = -104$ , and assuming  $E_a = 10$  for the back reaction (insertion of carbene in the O-H bond of acetic acid) one estimates  $\Delta H_f^0(CH_3OCH)_g \approx 7$ . These estimates lead to  $\Delta H_{1a} \approx +40$ ,  $\Delta H_{2a} \approx -50$  and  $\Delta H_{2b} \approx +35$ . Hence,  $(2b) \rightarrow$  and, presumably, (2a) as well — may have  $E_a \approx 35$  kcal.mole<sup>-1</sup>. This order of magnitude would tally with the observation that, in the vapour phase at 250°,  $CH_3OCH$  adds to alkene rather than give fragmentation products <sup>10</sup>.

## REFERENCES AND NOTES

- 1. A.Tinkelenberg, E.C.Kooyman and R.Louw, Rec. Trav. Chim. 91, 3 (1972).
- 2. e.g. J.Hine, "Divalent Carbon", The Ronald Press Company, New York, 1964, ch.3 and 6.
- 3 a) J.W.Engelsma, Rec. Trav. Chim. 84, 187 (1965).
  - b) N.Hashimoto, K.Matsumara and K.Morita, J.Org.Chem. 34, 3410 (1969)
- We employed a microreactor g.l.c. combination as described by A.Tinkelenberg, J. of Chromatographic Science <u>8</u>, 721 (1970).
- a) e.g. C.Walling, "Free Radicals in Solution", Wiley 1957, 493;
   W.A.Pryor, "Free Radicals", Mc.Graw Hill, 1966, 125.
  - b) H.R.Ward, Acc. of Chem. Research 5, 22 (1972).
- 6. S.W.Benson and R.Shaw, J.Chem.Phys. <u>47</u>, 4052 (1967)
- 7. D.C.Richardson, M.E.Hendrick and M.Jones jr., J.Am.Chem.Soc. 93, 3790 (1971).
- 8. Preliminary experiments with H.Nieuwenhuyse show that  $CH_3COOCH(CF_3)_2$  fails to eliminate acetic acid at  $SO\delta^OC$ .
- 9. a) S.W.Benson "Thermochemical Kinetics", Wiley, 1968.
  - D.R.Stull, E.F.Westrum jr, and G.C.Sinke, "The Chemical Thermodynamics of Organic Compounds", Wiley, 1969.
- 10. W.H.Atwell, D.R.Weyenberg and J.G.Uhlmann, J.Am.Chem.Soc. 91, 2025 (1969).